A graph consists of a set of vertices and a set of edges, where each edge joins a pair of vertices.
The set of vertices of a graph G is denoted by $V(G)$, the set of edges is denoted by $E(G)$.

$V(G) = \{v_1, v_2, v_3, v_4, v_5\}$

$E(G) = \{e_1, e_2, e_3, e_4, e_5\}$

Notes:
1. A graph may any number of vertices and any number of edges.
2. An edge may join a vertex to itself.
3. More than one edge may join a pair of vertices.
4. A vertex need not be attached to any edges.
5. An edge does not have a direction.
To describe a graph G completely we need to give:

1. The set of vertices $V(G)$.
2. The set of edges $E(G)$.
3. The edge-endpoint function which associates each edge with its endpoints, i.e. a pair of vertices.

For our example the edge-endpoint function is given by:

<table>
<thead>
<tr>
<th>edge</th>
<th>endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>${v_1}$</td>
</tr>
<tr>
<td>e_2</td>
<td>${v_1, v_2}$</td>
</tr>
<tr>
<td>e_3</td>
<td>${v_2, v_3}$</td>
</tr>
<tr>
<td>e_4</td>
<td>${v_2, v_3}$</td>
</tr>
<tr>
<td>e_5</td>
<td>${v_2, v_3}$</td>
</tr>
</tbody>
</table>
Some Terminology

1. An edge which joins a vertex to itself is called a loop, e.g. the edge e_1 in our example.

2. Edges which join the same pair of vertices are said to be parallel. In our example the edges e_3, e_4, e_5 are parallel.

3. Two vertices joined by an edge are said to be adjacent. In our example the vertices v_1 and v_2 are adjacent, but the vertices v_1 and v_3 are not adjacent.

Directed Graphs

A directed graph or digraph differs from a graph in that each edge has a direction.
To describe a directed graph D we need to give:

1. The set of vertices $V(D)$.
2. The set of edges $E(D)$.
3. The edge-endpoint function which associates each edge with its endpoints, in this case an ordered pair of vertices.

The edge associated with an ordered pair of vertices (v_i, v_j) is directed from v_i to v_j.

For our example digraph the edge-endpoint function is given by:

<table>
<thead>
<tr>
<th>edge</th>
<th>endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>(v_1, v_1)</td>
</tr>
<tr>
<td>e_2</td>
<td>(v_1, v_2)</td>
</tr>
<tr>
<td>e_3</td>
<td>(v_2, v_3)</td>
</tr>
<tr>
<td>e_4</td>
<td>(v_3, v_2)</td>
</tr>
</tbody>
</table>
Types of Graphs

A **simple graph** is a graph without any loops or parallel edges.
Example:

A **complete graph** is a simple graph where each pair of vertices is joined by an edge.
Example:
The complete graph on \(n \) vertices is denoted by \(K_n \).

The first few are:

\[
\begin{align*}
K_1 & \quad K_2 & \quad K_3 & \quad K_4
\end{align*}
\]

A **complete bipartite graph** is a simple graph where the vertices are divided into two sets, say \(V_1 \) and \(V_2 \), so that there is an edge from each vertex in \(V_1 \) to each vertex in \(V_2 \), but no edges between any vertices in \(V_1 \) and no edges between any vertices in \(V_2 \).

Example:
The complete bipartite graph on m and n vertices is denoted by $K_{m,n}$.
Here are some:

\[K_{1,2} \quad K_{2,2} \quad K_{3,3} \]

A graph H is a subgraph of a graph G if
1. Every vertex of H is a vertex of G.
2. Every edge of H is a edge of G.
3. Every edge of H has the same endpoints as in G.

Example: The graph
Has subgraphs:

\[H_1 \]

\[H_2 \]

There are many other possibilities.

Degree of a Vertex

The **degree** of a vertex \(v \) of a graph \(G \), denoted by \(\delta(v) \) or \(\deg(v) \), is the number of edges incident on \(v \), with a loop counted twice.

The **total degree** of a graph \(G \) is the sum of the degrees of all the vertices of \(G \).
Example:

\[
\begin{align*}
\text{deg}(v_1) &= 3 \\
\text{deg}(v_2) &= 4 \\
\text{deg}(v_3) &= 3 \\
\text{deg}(v_4) &= 0 \\
\text{deg}(v_5) &= 0 \\
\text{Total degree} &= 10
\end{align*}
\]

Theorem: For any graph G the total degree of G is equal to twice the number of edges of G.

Proof: Each edge (including loops) contributes two to the total degree of the graph. Thus the total degree is equal to twice the number of edges.

Example: Our example graph has five edges and total degree 10.
Example: The complete bipartite graph $K_{2,3}$

Has 3 vertices with degree 2 and 2 vertices with degree 3, giving total degree 12.

There are 6 edges.