Slide 2

Big O and Big Θ

Recall the definitions:

Let $f(x)$ and $g(x)$ be two functions.

We say that $f(x)$ is $O(g(x))$ or $f(x) = O(g(x))$ if there are numbers M and C such that

$$|f(x)| \leq C|g(x)| \quad \text{for } x \geq M$$

We say that $f(x)$ is $\Theta(g(x))$ or $f(x) = \Theta(g(x))$ if there are numbers C,D and M such that

$$D|g(x)| \leq |f(x)| \leq C|g(x)| \quad \text{for } x \geq M$$
Relations Between Big O and Big Θ

1. $f(x) = \Theta(g(x))$ if and only if $f(x) = O(g(x))$ and $g(x) = O(f(x))$.

(a) Suppose $f(x) = \Theta(g(x))$. We will show that $f(x) = O(g(x))$ and $g(x) = O(f(x))$.

Since $f(x) = \Theta(g(x))$ there are numbers C,D and M such that

$$D|g(x)| \leq |f(x)| \leq C|g(x)| \quad \text{for} \quad x \geq M$$

The inequality $|f(x)| \leq C|g(x)|$ says that $f(x) = O(g(x))$.

The inequality $D|g(x)| \leq |f(x)|$ can be rewritten

$$|g(x)| \leq \frac{1}{D}|f(x)|$$

which says that $g(x) = O(f(x))$.

(b) Now suppose that \(f(x) = O(g(x)) \) and \(g(x) = O(f(x)) \). We will show that \(f(x) = \Theta(g(x)) \).

First if \(f(x) = O(g(x)) \) the there are numbers \(C \) and \(M \) such that
\[
|f(x)| \leq C|g(x)|
\]
for \(x \geq M \). If \(g(x) = O(f(x)) \) the there are numbers \(D \) and \(N \) such that
\[
|g(x)| \leq D|f(x)|
\]
for \(x \geq N \).

This implies
\[
\frac{1}{D}|g(x)| \leq |f(x)|
\]
for \(x \geq N \).

Thus for \(x \geq \max(M, N) \)
\[
\frac{1}{D}|g(x)| \leq |f(x)| \leq C|g(x)|
\]
which is just the requirement that \(f(x) = \Theta(g(x)) \).
2. If $f(x) = \Theta(g(x))$ then $g(x) = \Theta(f(x))$.

Suppose $f(x) = \Theta(g(x))$. We will show that $g(x) = \Theta(f(x))$.

Since $f(x) = \Theta(g(x))$ there are numbers C,D and M such that

$$D|g(x)| \leq |f(x)| \leq C|g(x)|$$

for $x \geq M$

(a) From the inequality

$$D|g(x)| \leq |f(x)|$$

we deduce

$$|g(x)| \leq \frac{1}{D}|f(x)|$$

(b) From the inequality

$$|f(x)| \leq C|g(x)|$$

we deduce

$$\frac{1}{C}|f(x)| \leq |g(x)|$$
Putting these inequalities together we get

\[
\frac{1}{C}|f(x)| \leq |g(x)| \leq \frac{1}{D}|f(x)|
\]

with both holding for \(x \geq M \).

This says that \(g(x) = \Theta(f(x)) \).

Similarly, if \(g(x) = \Theta(f(x)) \) then \(f(x) = \Theta(g(x)) \).

So \(f(x) = \Theta(g(x)) \) is exactly the same thing as \(g(x) = \Theta(f(x)) \).

The Meaning of \(\Theta \) Notation

In the previous lecture we noted that \(f(x) = \Theta(g(x)) \) means that the absolute value of \(f(x) \) is “sandwiched” between multiples of the absolute value of \(g(x) \) for large enough \(x \).

Since \(f(x) = \Theta(g(x)) \) is equivalent to \(g(x) = \Theta(f(x)) \) it follows that the absolute value of \(g(x) \) is “sandwiched” between multiples of the absolute value of \(f(x) \) for large enough \(x \).
Example

In the previous lecture we saw that if
\[f(x) = \frac{3\sqrt{x}(2x + 5)}{|x| + 1} \quad \text{and} \quad g(x) = \sqrt{x} \]
then \(f(x) = \Theta(g(x)) \).

More precisely
\[3|g(x)| \leq |f(x)| \leq 9|g(x)| \]
for \(x \geq 5 \).
We also have $g(x) = \Theta(f(x))$.

In fact we see from the previous inequalities, following our proof that $f(x) = \Theta(g(x))$ is equivalent to $g(x) = \Theta(f(x))$, that

$$\frac{1}{9}|f(x)| \leq |g(x)| \leq \frac{1}{3}|f(x)|$$

for $x \geq 5$.

![Plot of functions](attachment:plot.png)

Slide 14
When $f(x) = \Theta(g(x))$ then also $g(x) = \Theta(f(x))$. The absolute value of $f(x)$ lies between multiples of the absolute value of $g(x)$ and the absolute value of $g(x)$ lies between multiples of the absolute value of $f(x)$ all for large enough x.

Another way of interpreting this is that $f(x)$ and $g(x)$ are roughly proportional for large enough x or that $f(x)$ and $g(x)$ grow proportionally for large x.

Properties of Θ

1. $c \cdot f(x) = \Theta(f(x))$ for any constant c.
2. If $f(x) = \Theta(g(x))$ and $g(x) = \Theta(h(x))$ then $f(x) = \Theta(h(x))$

Proofs of these properties are very similar to the proofs of corresponding properties of big O given in the previous lecture.
Example

We saw earlier that the number of arithmetic operations needed to evaluate a polynomial of degree n are

1. $3n - 1$ operations for the usual method.
2. $2n$ operations for Horner’s method.

Since $3n - 1 = \Theta(n)$ and $2n = \Theta(n)$ it also follows that $3n - 1 = \Theta(2n)$ and vice-versa.

In other words, for large n the number of operations needed to evaluate a polynomial of degree n by either method is roughly proportional to n.

The Meaning of O Notation

When $f(x) = \Theta(g(x))$ we have a pair of inequalities which “sandwich” multiples of the absolutes of the two functions between one another. From this it follows that $f(x)$ and $g(x)$ grow proportionally for large x.

When $f(x) = O(g(x))$ we have only one inequality

$$|f(x)| \leq C|g(x)|$$

which just says that proportionally $f(x)$ grows no faster than $g(x)$.
If \(f(x) = O(g(x)) \) then, unlike \(\Theta \), it does not follow that \(g(x) = O(f(x)) \).

Example

It turns out that \(n \) is \(O(n^2) \) but \(n^2 \) is *not* \(O(n) \).

It is easy that

\[
n \leq n^2 \quad \text{for } n \geq 1
\]

so \(n = O(n^2) \).

Conversely, suppose \(n^2 = O(n) \). Then by the definition of \(O \) there would be numbers \(C \) and \(M \) such that

\[
n^2 \leq Cn \quad \text{for } n \geq M
\]

but if \(n > \max(C, M) \) then we would have \(n^2 > Cn \) contradicting the previous inequality.
Application to Algorithms

We saw in this week’s tutorial that the number of comparisons needed to sort a list of \(n \) items using the bubble sort algorithm is, in the worst case,

\[B(n) = \frac{1}{2}(n^2 - n) \]

Now

\[B(n) = \Theta(n^2) \]

The proof is almost the same as that for \(f(n) = \frac{1}{2}n(n + 1) \) given in the previous lecture.

A way to understand this intuitively is that for large \(n \)

\[B(n) = \frac{1}{2}(n^2 - n) \approx \frac{1}{2}n^2 \]

This is because for large \(n \), \(n^2 \) is much larger than \(n \).

Thus, for large \(n \), \(B(n) \) is roughly proportional to \(n^2 \) which is just what \(B(n) = \Theta(n^2) \) means.

Note that this says, for example, if we increase the length of a list by a factor of 10, then we will require roughly 100 times as many comparisons to sort the list.
Big O and Algorithms

What can we say about sorting a list in general. Let $S(n)$ be the number of comparisons required to sort a list of n elements using the fastest algorithm possible.

All we can say is that

$$S(n) = O(n^2)$$

that is proportionally $S(n)$ grows no faster than n^2 (since we know the n^2 can be achieved by a particular algorithm, bubblesort, in the worst case).

When we know that

$$S(n) = O(n^2)$$

if we increase the length of a list by a factor of 10, then we will require no more than 100 times as many comparisons to sort the list.